Mathematical Reasoning
medium

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

A

Statement $-1$ is false, Statement $-2$ is true

B

Statement $-1$ is true, Statement $-2$ is false

C

Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$

D

Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$

(AIEEE-2009) (JEE MAIN-2013)

Solution

Statement-ll: $\quad(p \rightarrow q) \leftrightarrow(\sim q \rightarrow-p)$

$\equiv(p \rightarrow q) \leftrightarrow(p \rightarrow q)$

which is always true

so statement- -II is true

$ \text { Statement-l: } (p \wedge \sim q) \wedge(\sim p \wedge q)$

$=p \wedge \sim q \wedge \sim p \wedge q $

$=p \wedge \sim p \wedge \sim q \wedge q $

$=f \wedge f $

$=f $

so statement- – is true

Alternate

Statement-ll: $\quad(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$

$\sim \mathrm{q} \rightarrow \sim \mathrm{p}$ is contrapositive

of $p \rightarrow q$ hence $(p \rightarrow q) \leftrightarrow(p \rightarrow q)$

will be a tautology

statement-ll $\quad(p \wedge \sim q) \wedge(\sim p \wedge q)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.