Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]
  • [JEE MAIN 2013]
  • A

    Statement $-1$ is false, Statement $-2$ is true

  • B

    Statement $-1$ is true, Statement $-2$ is false

  • C

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$

  • D

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$

Similar Questions

Statement$-I :$  $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim  q)\vee \sim  (p\vee \sim  q) .$
Statement$-II :$  $p\rightarrow (p\rightarrow q)$ is a tautology.

The negative of $q\; \vee \sim (p \wedge r)$ is

Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.

Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology

  • [JEE MAIN 2013]

Given the following two statements :

$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.

$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.

Then

  • [JEE MAIN 2020]

The statement $(p \wedge(\sim q) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$ is equivalent to

  • [JEE MAIN 2023]